

Optimization of Compressed Natural Gas transportation Vessel: GASVESSEL project

Alberto Clarich, ESTECO – Head of Engineering team Oscar Perosa, Navalprogetti – Naval Architect

Summary

- Gasvessel Project (CNG) Description and Target
- Logistic optimization
- Structural optimization
- Risk analysis

ESTECO is an independent software provider, highly specialized in numerical optimization and simulation data management

Our products

modeFRONTIER

The comprehensive solution for process automation and optimization in the engineering design process

VOLTA

The collaborative web platform for Simulation Process and Data Management (SPDM) and design optimization

Optimization-Driven Design

Enabling the optimization-driven approach allows for dramatic reduction of both development costs and timeto-market.

Take advantage of automated design space exploration and discover innovative solutions that might otherwise have been dismissed.

Simulation is automated. Engineer focuses on the idea.

Balance conflicting objectives by taking into account multiple concerns and requirements.

Engineering Data Intelligence

Transform large amounts of data into valuable company assets and accelerate innovation

Turn data into valuable insights and propel your innovation process using a comprehensive environment for data analysis and visualization.

Quickly identify relevant performance metrics so that you can focus on what is important and make better decisions, faster.

Tools for synchronized data visualization are not just for data analysts: they empower experts from other departments to access and use data with confidence.

Our Customers & Industries

Navalprogetti

NAVALPROGETTI is a ship design company of Naval Architects, Marine and Industrial Engineers and Ship Surveyors that has been operating since 1975

Navalprogetti - Services and Skills

New building basic and detail design

Ship conversion, Ballast water treatment system and Scrabber retrofit design

Marine transportation of offshore structutes studies

Alternative fuels (LNG, CNG, H2) studies

CNG Transportation – GASVESSEL (EU Project)

Model test assistance

Yard assistance

Inclining experiments and sea trials

Navalprogetti – Clients

Gasvessel Project

- CONSORTIUM formed by 13 Partner Companies
- 8 Countries represented: Belgium, Cyprus, Germany, Greece, Italy, Norway, Slovenia, Ukraine
- Project duration: 48 months (started June 1st 2017)
- EU contribution = Project's financial value = 12 M€

EU Energy: Why Compressed Natural Gas (CNG)?

- **67% of gas in Europe is imported** (of which 37% from a single supplier)
- 5 times the amount of consumed gas is currently stranded in unexploitable gas reserves
- Expensive alternatives:
 - Pipelines
 - Construction costs
 - Environmental and political difficulties Point-to-point
 - LNG
 - Expensive liquefying and re-gasifying plants

ICNE-VA

GASVESSEL solution

Innovative, cost-efficient CNG transport system

- 1. Novel lightweight **Pressure Cylinders**
 - **70% lighter** than state-of-the-art
 - Large volume cylinders up to 175 m³ (liquid volume)
- 2. New ship design
 - Much higher payloads
 - Safe (un)loading at **300 bar**
 - Gas Capacity up to 15 MNm³

Built facilities and machineries for cylinder construction:

Hydroforming mould

Hydroformed cylinder

Winding machine

Curing station

Built facilities and machineries for cylinder tests:

Autofrattage and fatigue test pumping unit for 10000 cycles

Burst test pumping unit up to 1000 bar

GASVESSEL Project

Ship Design

3 different capacity ships were designed:

- Up to **15 Milions Nm³** with vertical large capacity cylinders
 - Cylinders length = 22.5 m
 - Cylinders diameter = 3.4 m
- Up to **12 Milions Nm³** with vertical large capacity cylinders
 - Cylinders length = 17.5 m
 - Cylinders diameter = 3.4 m
- Up to **5 Milions Nm3** with containerised cylinders
 - Cylinders length = 11.5 m
 - Cylinders diameter = 2.4 m

MAIN_CHARGETERS	112		
LENGTH OVER ALL	uit. 205.0 m		
LENCTH BETWEEN PERPENDICULARS	190.9 m		
WAX SPEACTH	36.0 m		
HEIDHT MAIN DECK	22.0 m		
FREEDOARD DECK	155 m		
BESIGN DRWT	7.5 m		
LOAD LINE SUMMER DRAFT ABOVE BJ.	7.5 m		
CAPACITY - NG @ 330 ter, 200	dd.15 x10 ⁴ Han ²		
GRS CYLINDERS DIMENDONS	25 m X #3.4 m		
GHS CYLINDERS Q.TY	272 pcs.		
52453	16.5 knetz		

4	in the	(COCOC)	- Mire
- 12			
- 14	i i bi bi bi	a la la la la	-
128	tititit.	attaint?	

MAIN CHARACTERIST	RO.	
LENCH OVER ALL		205.0 1
LENETH BETHEIN PEPPENDICIRARS		190.0 1
MAX BREADTH		360 -
HEGHT MAN DECK		22.0 *
FREENAND DEDK		15.5 1
DESIDI DRAFT		7.0.0
LOAD LINE SUMMER DEAT ADDRE BUL _		7.0 *
CAPACITY - NO @ 500 box, 2070	46.12 x10 ² No.	
LAS CUMERS BURNSCHE	12.0 m X 45.4 m	
DIS CHANGES D.7Y	278 pcs	
960		6.5 ind

MAIN CHARACTERISTICS	£	
LENGTH OVER ALL		140.0 m
LENGTH BETWEEN PERPENDICULARS		138.6 -
WAU EFEADTH		26.0 -
HDEHT MAIN DOOK		12.0 1
DESIGN DENT		1.50 =
CONTRACTISED FRACE CYLINDERS d	12 m	1 425 1
maco o.b		400 per
CARGO LIQUE VOLUME		18200 =
CAPACITY - NO 8 300 ber, 20%		5-10 ⁴ No
CONTRA .		18 1000

Transportation scenarios

 Analysis of 3 real-life geo-economical gas exploitation scenarios (East Mediterranean, Barents Sea, Black Sea)

ESTECO software to optimize logistic

- Ship carrying capacity
- No. of ship
- Ship main design parameters
- Transportation tariff

Web-based collaboration platform (VOLTA)

Shared project and distributed execution

Report analysis and Post Processing

VOLTA Platform: define optimization problem

From the Project interface select range of variation of design variables and select objectives type

GASVESSEL

VOLTA Platform: define optimization problem

From the Plan interface select Computational queue where the simulations will be run

VOLTA Advisor: analyze results

Use available charts to analyze solution and help decision making

Structural Optimization of pressure vessels

- Pressure vessels are defined by a steel liner and an overwrap of composite material
- Autofrettage pressure (150% of exercise pressure = 300 bar) applied during production to obtain pre-stress that reduces operative stress
- Geometry and material are optimized (mass and safety factors)

Optimization workflow with modeFRONTIER

- Inputs: steel thickess and composite material, fibers %, angle of winding layers
- Simulation: structural analysis (Python code) and CADWIND to simulate winding manufacturing process
- Optimization:

<u>minimum number of winding layers</u> to respect admissible stress (burst pressure at 750 bar) <u>minimize thickness variance (for an uniform coverage)</u>

GASVESSEL

Optimization results: Pareto frontier

Overwrap Max stress: 2470 MPa

GASVESSEL/

Liner Yield stress: 750 MPa

Pareto front (optimal solutions)

Chosen design validated by FEM analysis

Experimental validation

First prototypes of the vessels have been built by BMPlus at Buttrio (Italy) Burst and fatigue tests are in progress

Risk Analysis – Analytical model for leakage

- Due to J-T effect, gas dispersion from cylinders (300 bar) occurs at low T (220K)
- By enthalpy balance we can predict how gas mixture T and P in the hold varies

- Local supersonic expansion (T<100K) from orifice recoverered within 1cm
- At 1m of distance support receives a gas jet at 80m/s and 220K (thermal analysis confirms its resistance)

Risk Analysis – Analytical model for leakage

The model (Matlab, validated by CFD) can be automated by modeFRONTIER to analize **Pressure and Temperature varia**tion in the hold for different **mass flows**

Risk Analysis – Compressor room

Optimized **ventilation system** reduces **critical concentration** of methane (2.56% of mass) and risks of explosion in compressor room

GASvessel /

Risk Analysis – vent mast analysis

CH4 Ideal Gas High Density.Mass Fraction Contour 1

Vent mast system is designed (to evacuate gas when overpressure in hold is reached) Critical mass concentration (red color > 2.56%) is dissipated immediately

• Gas **Transportation scenarios**: Minimize costs to fulfill requests

 Gas cylinders: Minimize costs and optimize layers uniformity, guaranteeing the respect of safety factors

• **Explosion risks**: analyze gas leakages to minimize risks

Thank you for your attention!

www.esteco.com

www.navalprogetti.net

www.gasvessel.eu